Health Services Research Town Hall

April 14, 2011

12:30-5:00 p.m. Oak Amphitheater Emory Conference Center and Hotel

Refreshments to the Left in the Oak Break Area Restrooms to the Right

Health Services Research Inventory

0

David S. Stephens, MD Stephen W Schwarzmann Professor of Medicine Vice President for Research, WHSC Emory University

"is a multidisciplinary field of inquiry, both basic and applied, that examines the use, costs, quality, accessibility, delivery, organization, financing, and outcomes of health care services to increase knowledge and understanding of the structure, processes, and effects of health services for individuals and populations." (IOM, 1995)

"is the multidisciplinary field of scientific investigation that studies how social factors, financing systems, organizational structures and processes, health technologies, and personal behaviors affect access to health care, the quality and cost of health care, and ultimately our health and well-being. Its research domains are individuals, families, organizations, institutions, communities, and populations." (Academy for Health Services Research and Health Policy, 2000)

"examines how people get access to health care, how much care costs, and what happens to patients as a result of this care. The main goals of health services research are to identify the most effective ways to organize, manage, finance, and deliver high quality care; reduce medical errors; and improve patient safety." (Agency for Healthcare Research and Quality, 2002)

Comparative or Clinical Effectiveness Research

" conduct, support, or synthesize research that compares the clinical outcomes, effectiveness, and appropriateness of items, services, and procedures that are used to prevent, diagnose, or treat diseases, disorders, and other health conditions."

ARRA 2009

JAMA 2010: 303: 2182-2184

- Health Policy and Management
 - National and International Health Policy

Health Outcomes

- Quality, Safety, Satisfaction
- Clinical Effectiveness Research
- Health Economics
 - Value, Resources, Technology
- Health Delivery
 - Access, Models
- Heath Education and Practice

Other Health Services Research Topics

- Behavioral Research in Health
- Community/Health Care networks
- IT Infrastructure and Connectivity
- Primary Care Oriented Research
- Health Ethics
- Health Disparities

80 + Faculty with Health Services Research Interests / Funding

Kathleen Adams	Benjamin Druss	Jessica Holmes	Stephen Pitts
Susan Bauer-Wu	Sandra Dunbar	Marcia Holstad	John Puskas
Loida Bonney	Ingrid Duva	Debra Houry	Arshed Quyyumi
Arlene Chapman	Chris Flowers	Maeve Howett	Barbara Rothbaum
Michael Compton	Jennifer Foster	James Hughes	Richard Saltman
Elena Conis	Paula Frew	Nadine Kaslow	Leslee Shaw
Hannah Cooper	Julie Gazmararian	Jeffrey Koplan	Iris Smith
Carlton Dampier	Ron Goetzel*	Joseph Lipscomb	Nancy Thompson
Lyndsey Darrow	Victoria Green	Reynaldo Martorell	Kenneth Thorpe
Neal Dickert	Patricia Griffiths*	Clair Null	Kevin Ward
Monica Donohue	Jessica Holmes	Solomon Ofori-Acquah	Steven Wolf
Kim Rask	Viola Vaccarino	Venkat Narayan	Larry Phillips
Theresa Gillespie	Peter Wilson	Alex Isakov	Ken Brigham

80 + Faculty with Health Services Research Interests / Funding

Martha Rogers	Richard Rheingans	Claire Sterk	John Sweeney
Bob Lyles	Gina Wingood	Linda McCauley	Sara Markowitz
Victoria Green	Rani Singh	Rebecca Pentz	Yang Liu
Greg Berns	John Puskas	Sam Lim	Monica Donohue
Michael Goodman	Michael Kramer	Martha Rogers	Jim Curran
Mathew Strickland	Ya Wang	David Howard	Karen Andes
Solveig Argeseanu	Sara Markowitz	Gene Brody	Alex Null
Edmund Becker	Jeremy Sarant	Ying Zhou	Neal Dickert
Richard Saltman	Joel Saltz	Steven Culler	Barbara Stoll

Health Services Research by School / Center FY 2010

School/Division	\$ Total Dollars	
Health Affairs	135,565	
School of Medicine	4,887,565	
School of Nursing	2,411,737	
School of Public Health	9,215,577	
Total	16,650,444	

FY10 Health Services Research Funding by Department / Center

Department/Center	\$Total Dollars	Department/Center	\$ Total Dollars
SOM: Surgery	500,000	SON: Fam & Comm	860,233
SOM: Cardiology	860,688	SON: Adult & Elder	1,220,234
SOM: Gen Medicine		SON:Other	331,280
SOM: Infectious Dis	733,749	SPH: Behav Science	2,028,957
SOM: Nephrology	1,203,465	SPH: Health Pol	3,005,811
SOM: Peds	426,777	SPH: Environ & Occ	818,299
SOM: Geriatrics	565,187	SPH: Epidemiology	642,130
SOM: Genetics	215,173	SPH: Global Health	987,415
SOM: Psych	517,955	SPH: GH Institute	1,732,965
SOM: Radiation Onc	200,013		1,752,705

Strengths

- Health Policy and Management (Thorpe, Druss, Goetzl)
- Health Economics (Adams)
- International Health Policy (Koplan, Martorell)
- Health Disparities (Kaslow, Quyyumi, CTSA, CFAR)
- Behavioral Research in Healthcare
- Health Ethics
- SPH
- SON: symptom and self management behavioral interventions, quality of life, family caregiver outcomes, prevention
- Partnerships: Children's, MSM, CDC, GA Tech, Kaiser, Grady, ACS

Disease Specific Health Services Research Strengths

- Cardiovascular (Vaccarino, Dunbar, Wilson, Shaw)
- Psychiatry (Kaslow, Rothbaum, Thompson, Druss)
- ID/Vaccines (Frew, Hughes, Omer, Swartz. Mulligan, Del Rio)
- Cancer (Lipscomb, Gillespie)
- Emergency Medicine (Houry, Isakov)
- Diabetes (Narayan, Phillips)
- Peds Hem/Onc (Woods, Dampier)

Weaknesses or Underdeveloped

- Clinical Effectiveness Research
- VA Program in HSR&D
- Links with Community/Health Care Networks
- Quality
- IT Infrastructure and Connectivity
- Primary Care Oriented Research
- New Healthcare Delivery Models

Threats

- Competition
 - AHCs
 - Non-AHCs
- Funding Uncertainties in Health Services Research
- Anticipated Reductions in R&D Expenditures
- Health Care Reform and Reimbursement Changes
- Fragmentation of Efforts

Opportunities

- Health Ethics
- Pediatric Health Services Research
- Global Health Policy
- Emory Institute for Advanced Policy Solutions
 - Emory Healthcare Innovation Program
- Health Disparities
- General Medicine
- Links to Quality Initiatives
- VA HSR&D <u>http://www.hsrd.research.va.gov/</u>
- Business School / College Economics Dept?
- GA Tech Health Systems Institute

HSR&D Funding ~\$2B and Increasing

- Patient Centered Outcomes Research Institute (PCORI)
- NIH
- AHRQ
- CMS (Center for Medicare and Medicaid Innovation)
- HHS
- DOD
- VA
- CDC
- National Center for Health Workforce Analysis-HRSA
- National Health Service Corp-HRSA
- FDA (Drug Effectiveness and Safety)

Benchmarking

- Tufts-New England Medical Center-Institute for Clinical Research and Health Policy Studies-Harry Selker
- Stanford-Department of Health Research and Policy
- Columbia/NY-Presbyterian-Harold Pincus
- Health Research and Education Trust with AHA, (Health Services Research)
- Health Affairs
- Kaiser / Geisinger / Intermountain Healthcare, Mayo Clinic
- RAND
- Dartmouth Institute for Health Policy and Clinical Practice

Next Steps

- Completion of Inventory
- Summit/Town Hall Meeting, April 2011
- HSR Committee
- Define Core Assets to Develop HSR&D
- Development of a Website
- Key New Recruitments
- Integration with Health Care Quality Initiatives
- Better Define Opportunities for Federal Funding
- Better Define Benchmark Programs

Health Services Research in HPM

Kimberly Rask MD, PhD Department of Health Policy and Management Rollins School of Public Health April 2011

Department overview

16 faculty members

- Range of methodologic disciplines including economics, statistics, behavioral science, evaluation sciences, health education, health policy, sociology and medicine
- Existing collaborations across disciplines and organizations

HSR is not new...

Health Services Research is the study of the "benefits of medical interventions in relation to their hazards and costs."

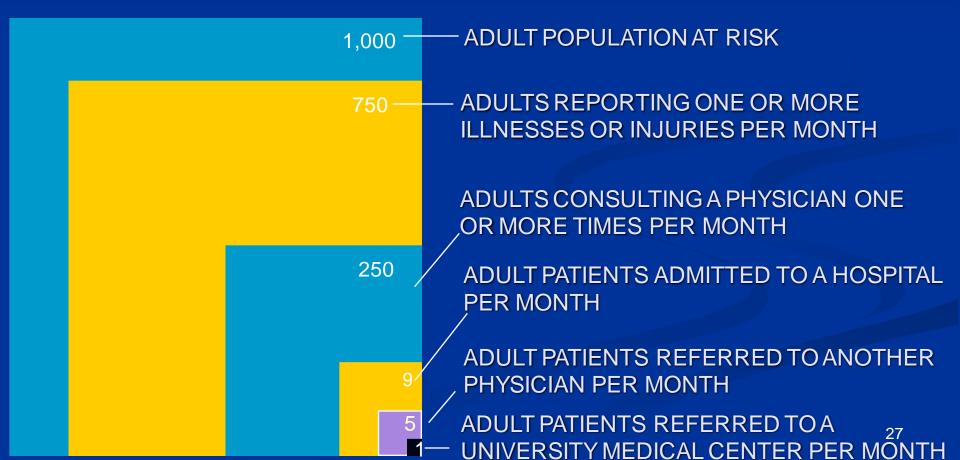
> Kerr L. White, M.D. NEJM, 1961

One newer aspect is emphasis on translating information into practice

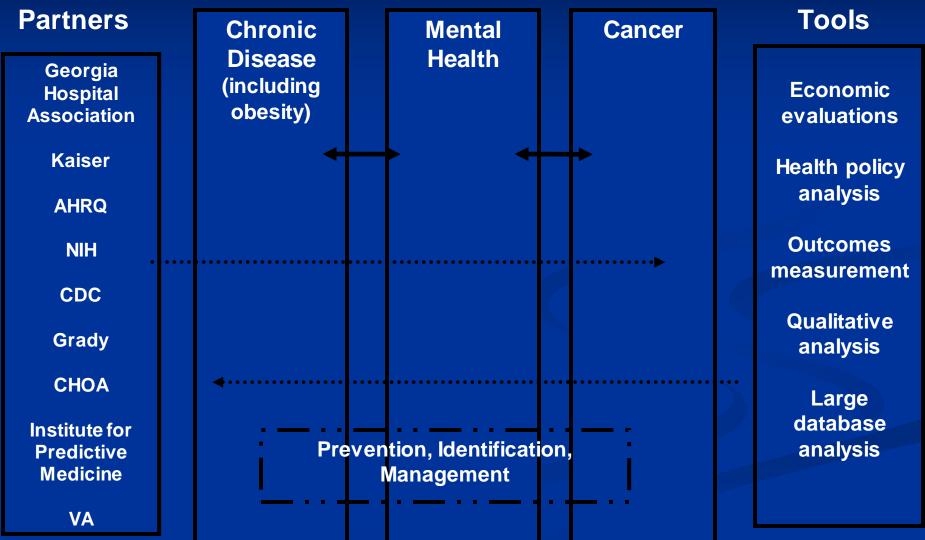
"..to assure Americans that the *information* needed for decision making will be available; that it will be translated into *knowledge* about health care outcomes, effectiveness, efficiency, and quality; and that it will be used wisely to *enhance the health of the public*"

> John Eisenberg, MD,MBA AHRQ, 1998

Where federal funds are focused...


Health Services Research examines *how people get access to care, how much care costs, and what happens to patients as a result of this care.* The main goals are to identify the most effective ways to organize, manage, finance and deliver high quality care, reduce medical errors, and improve patient safety.

AHRQ, 2002


First common theme to much of health services research...

A second theme stresses importance of populationbased analyses and selection bias *(White et al., NEJM 1961)*

Research areas bridge science, policy, education and practice

Obesity and Cardiovascular Research

Workplace wellness initiatives

 Impact on productivity and health care costs (Goetzel)

Prevalence

> Obesity among African-American women in an inner city primary care practice (Jacobson)

Childhood obesity

Impact of health insurance coverage on screening and treatment for childhood obesity (Rask)

Obesity and Cardiovascular Research

CABG outcomes

Impact of gender and hospital quality on outcomes for women undergoing CABG (Culler)

 Health care costs of chronic conditions
 > Impact of growing burden of chronic diseases on health care costs (Thorpe)

Mental Health

 Promoting use of personal health records by persons with SMI (Druss)

 Improving the provision of primary care to persons with SMI (Druss)

 Racial and ethnic differences in use of mental health services by adolescents (Cummings)

Cancer

- Impact of Medicaid coverage on time to treatment for cancer (Adams)
- Impact of detection and treatment on lifetime medical costs for patients with polyps and colorectal cancer (Howard)
- Local practice and quality variations in breast and prostate cancer care (Lipscomb)

Economic evaluations

Cost-effectiveness analyses

 costs of implementing and EHR in primary care practices (Culler, Becker)

Advancing the science of health care costing (Lipscomb)

Health care finance

- Impact of HMOs in Medicaid populations (Adams)
- International health care reform options (Saltman)

Economic modeling and forecasting

 Costs of public services for teenage mothers post-welfare reform (Adams)

Variations in quality of care

Health care quality

- Improving prescribing patterns of Medicaid providers (Becker)
- Evaluating a quality improvement curriculum for health system leaders (Rask)

Health disparities

Maternal and child health in diverse communities (Gaydos)

Health literacy

 Health literacy intervention to improve medication adherence (Blake)

Health Outcomes

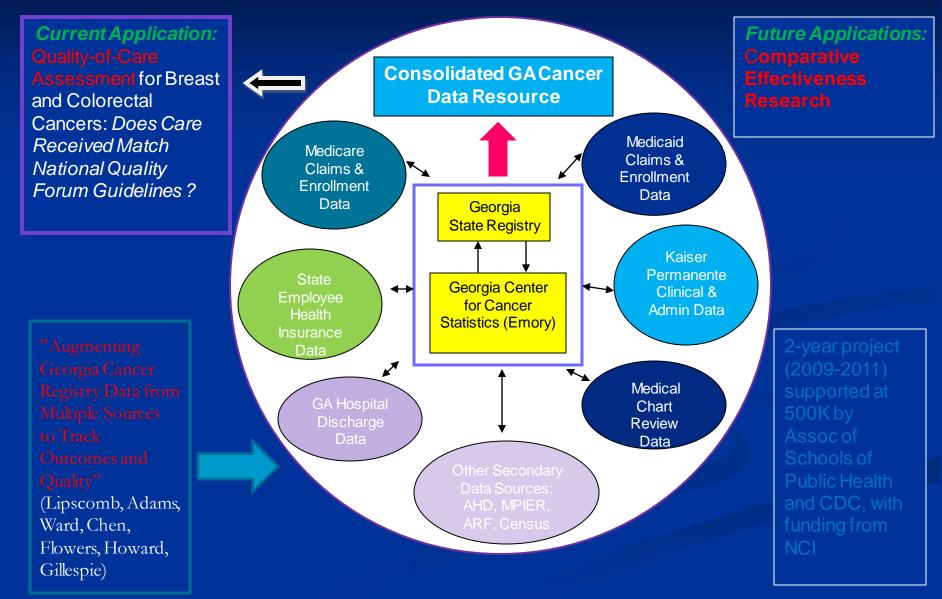
Health outcomes measurement

- Effects of cigarette taxes and indoor air regulations on pre-pregnancy smoking, quit behaviors and birth outcomes (Adams)
- Impact of IT adoption on patient outcomes (Culler)

Patient Safety

- Improving disaster planning in nursing homes, home health agencies and dialysis centers (Howard)
- Impact of pharmacist detailing on adverse drug events post hospital discharge (Rask)

Administrative claims analyses


Public use data sets

> HCUP, ambulatory surveys, longitudinal surveys

Medicare data

- Medpar, Chronic care data warehouse
- Medicaid data
 - State-specific data sets
- Commercial claims databases
 - ▹ FFS and HMO

Linking Georgia Cancer Registry Data to Public and Private Sources

In sum...

Successful health services research programs are built upon...

- teams of multi-disciplinary researchers
- with collaboration between content experts and methodologic experts
- > who have an accessible data "laboratory"
- > and are supported by a mix of internal, industry, foundation and federal funding

Fred Sanfilippo MD, PhD

Health Services Research Town Hall Meeting April 14, 2011

EMORY

ROBERTW WOODRUFF HEALTH SCIENCES CENTEI

Healthcare Innovation Program Outline

- What, Who, Why
- Current status
- Website demo
- Next Steps

Healthcare Innovation Program The What

Using combined approaches

- Virtual : <u>www.hip.emory.edu</u> "Wiki + Linked In"
- Real: meetings, workshops, projects

An interactive network that provides

- Information: content, links
- Resources: facilitate activities
- Connections: among faculty, staff, students

Focused on healthcare delivery/services/systems

- Research: sponsored projects
- Education: courses, public
- Programs: quality, access, cost

The Who: Engaged Institutions

Emory:

• HIP Strategic Planning Committee

Georgia Tech:

- EVP Research Office
- Health Systems Institute

ACTSI: institutional partners, including

- Morehouse School of Medicine
- Children's Healthcare of Atlanta
- Grady Health System
- Atlanta VAMC

Supported by the Woodruff Fund and ACTSI

Healthcare Innovation Program The Who: Emory HIP SPC

David Bederman, Law **Bill Bornstein**, EHC Shari Capers, WHSC Maryam Carn, HIP Steve Culler, RSPH Lanny Liebeskind, CAS Jeff Molter, WHSC Joel Saltz, SOM, CCI Fred Sanfilippo, HIP

Susan Shapiro, SON
David Stephens, WHSC, SOM
Anand Swaminathan, GBS
Gary Teal, WHSC
Ken Thorpe, RSPH
Viola Vaccarino, SOM, RSPH
Paul Wolpe, Ethics Ctr
Paul Spearman, SOM, CHOA

Healthcare Innovation Program The Why

Increase Effectiveness

- Enhance faculty, student, staff interactions
- Identify and facilitate high priority research, education, and program opportunities

Increase Efficiency

- Leverage existing assets; cost avoidance
- Facilitate access to information, collaborators for grant submissions, educational offerings

Increase Recognition

- Invited speakers
- External advisory board members

Development Phases

Phase I: Sept 2010-Jan 2011

- HIP strategy, plan developed by SPC
- Emory inventory, internal website developed

Phase II: Jan- April 2011

- ACTSI, Georgia Tech, CHOA engagement
- Expand internal website, content
- Initiate internal workgroups, identify opportunities

Phase III: April-Sept 2011

- Launch website, enhance functionality; track use
- Expand partners, content
- Expand workgroups, prioritize opportunities

Phase IV: Sept 2011-Sept 2012

• Initiate external speakers, pilot projects programs

Information: Research and Education

Program Topics

- 4 major Healthcare categories: Delivery, Outcomes, Costs & Value, Education
- 30 total categories; 2-3 subcategories each

Sponsored Research

- Program topics, faculty PI, sponsor, project link
- > 125 projects; > 100 faculty; > 75 sponsors

Educational Offerings

- Program topics, courses, schools/colleges
- > 30 courses, 8 schools/colleges
- Seminars, Lectures, Meetings

Information: Resources

Faculty

• By University, College/School; Topics

Funding Sources

- Local/internal, regional
- Government, non-government

Support Programs

- Local/internal, regional
- Government, non-government

Databases

- Local/internal, regional
- Government, non-government

Information: Resources

News & Events

- Events: scheduled lectures, programs
- News from National Sources
- News from Local Partners

Innovation Highlights

- Recent Research Projects
- Recent Publications
- Links: sites, journals

Partner Organizations

- Emory, Georgia Tech, ACTSI affiliated
- Other local, regional

Healthcare Innovation Program Website

Copyright @ 2011 Emory University - All Rights Reserved | 201 Dowman Drive. Atlanta, GA 30322 USA 404.727.6123

EMORY

WOODRUFF H E A L T H S C I E N C E S

Potential Website Uses

Faculty, Staff

- Identify potential collaborators by interest topic, research program, course offering, academic discipline
- Identify potential funding sources, support programs
- Keep up to date: news & events, publications

Students

- Find potential mentors by interest topic, research program, course offering, academic discipline
- Identify course offerings, support programs
- Keep up to date: news & events, publications

External Community

• Identify activities, individuals; news & events

Healthcare Innovation Program Next Steps

Website

- Expand content; engage other local partners
- Enhance content; edits, updates
- Improve functionality, database content, utility

Seminars, Programs

- Internal speakers program
- External speakers program
- Promote existing programs among partners

Healthcare Innovation Program Next Steps

Workgroups

- Initiate, facilitate "bottom-up" interest groups within and across topics, schools and institutions
- Identify research, funding opportunities
- Help identify internal priorities

Pilot Projects

- Internal, local seed funding
- Facilitate research, education proposals
- Regional, national collaboration

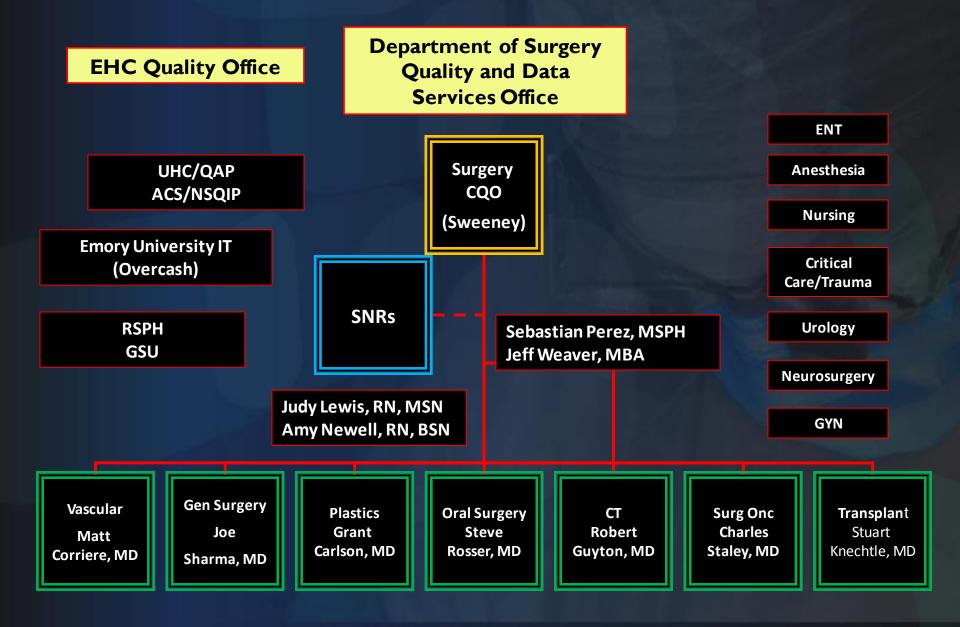
Leveraging Investments in Clinical Quality to Enhance Health Services Research

John F. Sweeney, MD Chief, General and Gastrointestinal Surgery Director, Clinical Quality and Patient Safety Department of Surgery

Best Place for Surgical Care

- Best possible outcomes and service
 Perspective of patient and family, referring physician, managed care
- Build systems of care
 - Paradigm shift from individual excellence model to integrated care delivery (DOS/DOM/EUH/EUHM/SOM/TEC)

 Data-driven multi-parameter assessment of Quality and Clinical Effectiveness
 Net Health Outcomes and Service


- Integrated clinical research and Health Services Research
- Culture of Quality and Service

Objectives

- Outline Department Quality Program
- Overview of ACS/NSQIP and UHC/QAP
- "Bedside to Laboratory and Back Again" Readmission Project

How is quality measured?

- In general outcomes databases can be divided into two types based on how the data is obtained: 1. Administrative
 - 2. Clinical
- The value of the product is directly related to the quality of the data.
- Bad data in = Bad data out

University Health System Consortium: Quality and Accountability Program

- Currently Emory Healthcare's outcomes vendor
- Only full UHC members participate
- Source data obtained from:
 - Clinical database (CDB)
 - Operational database (ODB)
 - Core measures submissions

University Health System Consortium: Quality and Accountability Program

- Institutional performance metrics grouped into 6 domains
 - Safety, mortality, effectiveness, equity, efficiency and patient centeredness
- The first 4 used to calculate overall score.
- Efficiency and patient centeredness reported but not included in calculations
- Implementation of standardized patient satisfaction survey in future

American College of Surgeons: National Surgical Quality Improvement Program

Prospective data collection by nurse reviewer

Demographics: Six variables Surgical Profile: 11 variables Pre-Operative Data: 44 clinical variables and 13 laboratory variables Intra-Operative Data: 16 clinical variables and 3 occurrence variables Post-Operative Data: 20 occurrence variables, 12 laboratory variables, and 10 discharge variables

American College of Surgeons: National Surgical Quality Improvement Program

- Data then analyzed using validated risk adjustment models and Results reported as Observed/Expected occurrences (O/E ratio)
- Reports available for review on a semiannual basis (June and January)
- Online reports available to monitor outcomes between formal report cycles
- Use data to re-engineer workflows, foster and improve internal education, and to develop clinical performance improvement initiatives

- Patient Protection and Affordable Care Act
- Specific focus on reducing readmissions
- Heart Failure, Acute Myocardial Infarction and Pneumonia
- Understand how this might impact surgical specialties

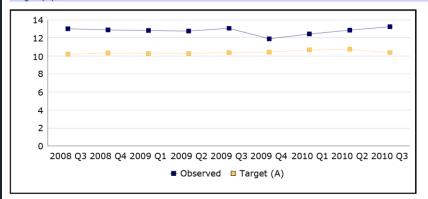
- EUH readmission rate above UHC median
- General Surgery contributor
- Reviewed 6 month time frame of General Surgery readmissions from UHC databases
 Heterogeneous population
 Difficult to draw conclusions/identify areas for improvement
- Needed new strategy

Emory University Hospital

Jul - Sep 2010 (Q3)

30-Day Readmission Rate (all cause)

Definition - 30-Day Readmission Rate (all cause)


The proportion of patients who return to the hospital within 30 days of discharge from the prior (index) admission. Index admissions will be drawn from the reporting period except for the most-recent quarter or year. Encounters in the last 30 days of the most-recent quarter of patient data is available to UHC), these rates will be updated to include index admissions for the entire reporting period. At the next report release (when another quarter of patient data is and deaths at first admission are excluded from the numerator and denominator. The calculation formula is: Readmission Readmissions/number of index admissions.

Print Date:

Data Extract Date:

	Relative					UHC	
	Performance	Observed	Numerator	Denominator	Target	Median	Rank
Current Quarter	$\overline{}$	13.3	845	6,377	10.4	11.7	87/113
Recent Year	$\overline{}$	12.6	3,119	24,702	10.8	12.1	70/113

	Current Quarter	Last Quarter	Recent Year
Cases (denom.)	6,377	6,161	24,702
Numerator (cases)	845	793	3,119
Observed	13.3	12.9	12.6
Target (A)	10.4	10.7	10.8

Data Source: UHC CDB Related Report: N/A Contact: Jodi Neikirk, cdpinfo@uhc.edu or Steve Meurer, meurer@uhc.edu

Benchmarks:	Quantiles:						
Current Quarter (n)	10th	25th	50th	75th	90th		
A) UHC Primary Population (113)	9.0	10.4	11.7	13.2	14.0		
B) UHC CMI < 1.25 (62)	6.0	7.5	10.0	11.3	14.1		

Sunday, April 10, 2011

Wednesday, January 19, 2011

		Readmission				n
Related Metrics Current Quarte	r	Numerator	Denomin	ator	Rate	Rank
Related 30-Day Readmission Rate		395	6,377		6.2	89/113
Unrelated 30-Day Readmission Rate		450	6,377		7.1	77/113
Current Quarter UHC To in This Metric		Post- Surg Iortality	AHRQ Medical Mortality	FTEs/ AOB	LOS O/E Ratio	Tot Exp/ Dischg (Net BD)
PARKLAND	6.1	<u> </u>	0			
HARBOR-UCLA	6.2					
HERMANN	6.4	\odot				
NEVADA	7.4					
UTMB-HEALTH	7.5			\odot		\odot
NMEXICO	8.0	Ο	Ο		0	•
LOUISVILLE	8.5			\odot	0	Ō
UTAH	8.7		\odot		Ō	Õ
AHS-OVERLOOK	8.8	\odot	õ		õ	
NYU	8.9	ŏ	ŏ		Ĩ.,	

30-Day Readmission Rate (all cause) Legend:

- Substantially Worse than Target Range Performance > UHC 90th percentile
- Worse than Target Range
 Within Target Range
- Performance > UHC 50th percentile
- Performance <= UHC 50th percentile
- Substantially Better than Target Range Performance < UHC 10th percentile
- 🚫 No Data From Your Institution

Performance in Other Metrics Legend:

- Within Target Range
- OSubstantially Better than Target Range

🚫 🛛 No Data Available

A missing performance symbol means performance was worse than target range

Prioritizing Quality Improvement in General Surgery

Peter L Schilling, MD, Justin B Dimick, MD, MPH, John D Birkmeyer, MD, FACS

BACKGROUND:	Despite growing interest in quality improvement, uncertainty remains about which procedures
	offer the most room for improvement in general surgery. In this context, we sought to describe
	the relative contribution of different procedures to overall morbidity, mortality, and excess
	length of stay in general surgery.
STUDY DESIGN:	Using data from the American College of Surgeons' National Surgery Quality Improvement
	Program (ACS-NSQIP), we identified all patients undergoing a general surgery procedure in
	2005 and 2006 (n = 129,233). Patients were placed in 36 distinct procedure groups based on
	Current Procedural Terminology codes. We first examined procedure groups according to their
	relative contribution to overall morbidity and mortality. We then assessed procedure groups
	according to their contribution to overall excess length of stay.
RESULTS:	Ten procedure groups alone accounted for 62% of complications and 54% of excess hospital
	days. Colectomy accounted for the greatest share of adverse events, followed by small intestine
	resection, inpatient cholecystectomy, and ventral hernia repair. In contrast, several common
	procedures contributed little to overall morbidity and mortality. For example, outpatient cho-
	lecystectomy, breast procedures, thyroidectomy, parathyroidectomy, and outpatient inguinal
	hernia repair together accounted for 34% of procedures, but only 6% of complications (and
	only 4% of major complications). These same procedures accounted for $<$ 1% of excess hospital
	days.
CONCLUSIONS:	A relatively small number of procedures account for a disproportionate share of the morbidity,
	mortality, and excess hospital days in general surgery. Focusing quality improvement efforts on
	these procedures may be an effective strategy for improving patient care and reducing cost.
	(I Am Coll Surg 2008:207:698–704, © 2008 by the American College of Surgeons)

PROCEDURE	CPT CODE
COLECTOMY+/- COLOSTOMY	44140-44160,44188,44204-44208, 44210-44213,
	44227, 44238
SMALL INTESTINE RESECTION	44187, 44202-44203, 44227, 44238,
	44120-44121, 44125-44128, 44130
CHOLECYSTECTOMY/INPATIENT	47562-47564, 47579, 47600, 47605, 47610,
	47612, 47620
CHOLECYSTECTOMY/OUTPATIENT	47562-47564, 47579, 47600, 47605, 47610,
	47612, 47620
	·
PANCREATECTOMY	48140, 48145-48146, 48148, 48150, 48152-
	48155, 48160
APPENDECTOMY	44955,44970, 44979, 44950-44960
BARIATRIC SURGERY	43644-43645, 43770-43774, 43842-43848,
	43886-43888, 43800, 43651-43652, 43659
PROCTECTOMY +/- COLECTOMY +/- ANASTOMOSIS	44155, 44157-44158, 44212, 45110-45114,
	45116, 45119-45121, 45123, 45395, 45397
LYSIS OF ADHESIONS	44005, 44180
LIVER RESECTION	47120, 47122, 47125, 47130

	Over	within			re-admission	Total re-admission
Procedure	72 hours	72 hours	Encounters	rate	rate	rate
CHOLECYSTECTOMY/IN&OUT	12	5	500	2.40%	1.00%	3.40%
COLECTOMY COLOSTOMY	21	11	263	7.98%	4.18%	12.17%
BARIATRIC SURGERY	6	2	255	2.35%	0.78%	3.14%
APPENDECTOMY	2	5	214	0.93%	2.34%	3.27%
DRAIN PERITONEAL ABSCESS/NOT APPENDICEAL	34	3	212	16.04%	1.42%	17.45%
SMALL INTESTINE RESECTION	18	7	171	10.53%	4.09%	14.62%
VENTRAL HERNIA REPAIR	14	1	167	8.38%	0.60%	8.98%
PARATHYROIDECTOMY	2	1	151	1.32%	0.66%	1.99%
PANCREATECTOMY	16	3	134	11.94%	2.24%	14.18%
LIVER RESECTION	4	2	98	4.08%	2.04%	6.12%

- Preliminary analysis of factors associated with early readmission undertaken
- Collaboration with GSU Experimental/Behavioral Economics Group Jim Cox, PhD Vjollca Sadiraj, PhD Kurt Schnier, PhD
- NIH grant submitted 3/2010 and awarded 10/2010
- In depth econometric analysis almost complete Complex GI Surgery for Cancer 8500 cases from CDW Over 250,000 data points
- Short term goal:"Triage" activities of the Transition Manager
- Long term goal: Redefine how decision to D/C made

- Create discharge decision support software tool (risk calculator)
- Test the impact of tool in an experimental setting
 - Medical Students
 - Surgery Residents
 - Attending Surgeons
- Test the impact of switching D/C default from an "opt in" decision to an "opt out" decision
 - Maintain physician autonomy
 - Changes the transaction costs
- "Decision Software Tool" required for these experiments can be used in future to educate Medical Students about D/C decision during preclinical curriculum

Department of Surgery Quality Program

 LAPAROSCOPIC VERSUS OPEN APPENDECTOMY: An Analysis of Outcomes in 17,199 Patients Using ACS/NSQIP

Accepted for publication in Journal of Gastrointestinal Surgery

• Left Subclavian Artery Coverage During Endovascular Thoracic Aortic Aneurysm Repair: Risk of Perioperative Stroke or Death

Presented at Society of Vascular Surgery and manuscript in preparation

Uptake of Comparative Effectiveness Research: Implications for Discharge Decision

NIH Grant Awarded

- A Behavioral Model of Organ Utilization in Patients with Chronic Renal Failure NIH Submission 3/2010
- Georgia Surgical Quality Collaborative WellPoint Signature Grant 10/2010
- Resident Participation During CEA: Impact on Perioperative Outcomes
- Prevalence of DNR Status in Vascular Surgery Patients: Impact on Perioperative Mortality
- Impact of End Stage Renal Disease on Outcomes for Bariatric Surgery
- Single versus Multiple Operative Teams during Endovascular Abdominal Aortic Aneurysm Repair: 30-Day Mortality Analysis from the ACS-NSQIP Dataset

Thank You Questions?

Georgia Tech Institute for People and Technology

WHAT IF?

Transforming Complex Human Enterprises Through Disruptive Research



Lead Domains

Healthcare

Media

Our Approach

Transformative

What is the vision?

Transdisciplinary

Who needs to be at the table?

Translational

How to pave the road for real world impact?

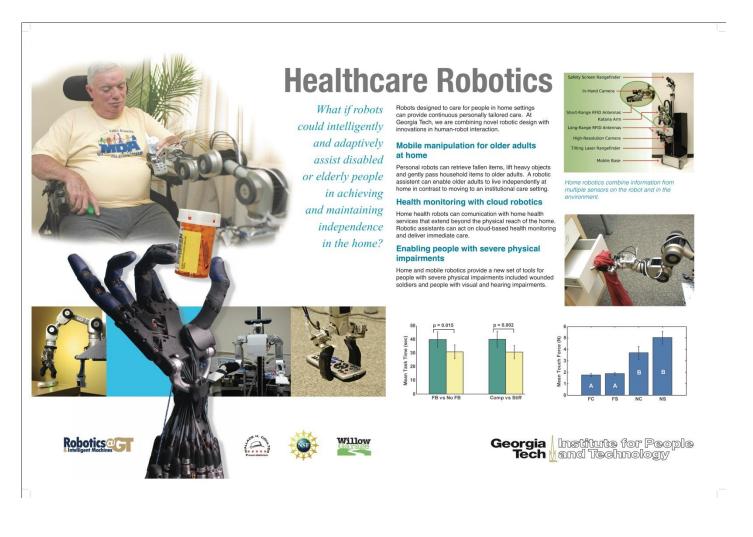
Networked Model

Academic/applied research, prototyping at GTRI

An "onramp" to GT for external partners

Joint investment in competitive infrastructure

Healthcare Subdomains


Transforming Delivery Systems

Enabling Everyday Healthcare

Enabling Everyday Healthcare

What if robots could intelligently and adaptively assist disabled or elderly people in achieving and maintaining independence at home?

Enabling Everyday Healthcare

What if everyone could make decisions about healthcare and lifestyle based on a unique personalized view of their own health?

Enabling Everyday Healthcare

What if even subtle changes in children with autism or elderly patients could be easily monitored to make timely decision?

Behavior Imaging

What if even subtle behavioral changes in children with autism or elderly chronic disease patients could be easily monitored in order to make timely healthcare choices?

Faculty from several schools at Georgia Tech, from Emory University and the Marcus Autism Institute are leading this ground-breaking research program. Specific challenges include:

How to differentiate intentional and meaningful interactions from coincidental encounters

Human behavior is rich, dynamic and complex. Through repeated observation and detailed analysis can we discern meaningful behaviors that belie hidden health concerns

How to characterize normal and abnormal patterns of behavior

Each patient is the norm. This common wisdom in medicine calls to the need for individualized models that answer the question. "Is this behavior normal for this individual?" and with that answer open the door for calibrated models of human behavior in a range of common situations.

From X-ray to MRI to **Behavioral Imaging**

Medical science leaps forward with the invention of new imaging technologies. Behavior imaging promises a new world of medical insights as it enables sensing of social, dynamic and everyday activities

Capturing	Measuring	Understanding
Behavioral	Behavioral	Dyadic
Signals	Variables	Behaviors
Face and Gaze	Affect	Interaction
Vocalization	Attention	modeling and
Physiological	Action and Sign	parsing
Synchronization Environment	Recognition	Divergence analysis
Reflection and	Behavior	Visualization
Usability	Inventory	and Retrieval

Georgia Institute for People Tech Mand Technology

Transforming Delivery Systems

What if innovative healthcare applications could simply "plug in" to health information exchanges?

Trusted Application Platforms

What if innovative health care applications for tomorrow's mobile and home based media technologies could simply "plug in" to health information exchanges and mesh seamlessly with the complex mix of data representations, structures, and standards used in the system?

Georgia Tech is assembling an open source Health IT test bed as the basis for creating an environment and architecture that will enable health application designers and developers to invent and deploy tools for health care delivery

Patients can control what information they want accessible to whom and under what circumstances

Data security and liquidity are key. Information architectures for Health IT must meet the demands of a modern, dynamic, and hetorgenous care ecosystem.

Health care providers, patients, and others can access authorized data in precise ways

Georgia Tech is advising the design of Georgia's Health Information Exchange (HIE). Through parntership with the Department of Community Health (DCH), this project aims to create a hetrogenous flexible network that meets demands ranging from dense urban centers and rural healthcare.

ORGIA DEPARTMENT OF

Georgia Tech is assisting primary care

Transforming Delivery Systems

What if care spaces, health IT and medical devices were designed to work together seamlessly based on care processes?

Transforming Delivery Systems

What if managers and policy makers could "test drive" new ideas with a model that encompasses our health system?

WHAT IF?

Professional HIT Certificate Program at GT

Four 2-day Friday/Saturday Courses:

Understanding the changing dynamics of the health care industry Contemporary health care IT technologies

Managing change to solve your customers' future challenges Hands on project

Contact Sherry Farrugia 404-385-0534 sherry.farrugia@innovate.gatech.edu

Breakout Session Assignments

Session	Room	Color
HSR Funding & Program Development	Dogwood	Green
HSR Key Faculty, Partnerships & Collaborations	Mountain Laurel	
HSR Programs 1	Maple	Blue
HSR Programs 2	Magnolia	Red

